Mapping seabed sediments: Comparison of manual, geostatistical, object based image analysis and machine learning approaches
نویسندگان
چکیده
Marine spatial planning and conservation need underpinning with sufficiently detailed and accurate seabed substrate and habitat maps. Although multibeam echosounders enable us to map the seabed with high resolution and spatial accuracy, there is still a lack of fit-for-purpose seabed maps. This is due to the high costs involved in carrying out systematic seabed mapping programmes and the fact that the development of validated, repeatable, quantitative and objective methods of swath acoustic data interpretation is still in its infancy. We compared a wide spectrum of approaches including manual interpretation, geostatistics, object-based image analysis and machine-learning to gain further insights into the accuracy and comparability of acoustic data interpretation approaches based on multibeam echosounder data (bathymetry, backscatter and derivatives) and seabed samples with the aim to derive seabed substrate maps. Sample data were split into a training and validation data set to allow us to carry out an accuracy assessment. Overall thematic classification accuracy ranged from 67% to 76% and Cohen’s kappa varied between 0.34 and 0.52. However, these differences were not statistically significant at the 5% level. Misclassifications were mainly associated with uncommon classes, which were rarely sampled. Map outputs were between 68% and 87% identical. To improve classification accuracy in seabed mapping, we suggest that more studies on the effects of factors affecting the classification performance as well as comparative studies testing the performance of different approaches need to be carried out with a view to developing guidelines for selecting an appropriate method for a given dataset. In the meantime, classification accuracy might be improved by combining different techniques to hybrid approaches and multi-method ensembles.
منابع مشابه
Analysis Accruing of Sentinel 2A Image’s Classification Methods Based on Object Base and Pixel Base in Flood Area Zoning of Taleqan River
Flood zonation mapping is one of the priorities for the soil and water management, which Remote Sensing (RS) capabilities are very applicable to this issue. The main objective of this research was study of accuracy of the Object oriented and Pixel based methods for flood zonation mapping in the Taleghan River basin. Therefore, the Sentinel 2A satellite image of the study area classified using s...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملGhost Image Mapping of Palatal Bone of Maxilla and Nasal Cavity in Panoramic View Using Cranex D Digital Machine
Introdouction: The mapping of ghost images of the maxilla and the nasal cavity, which are complex structures, is very important. The position of objects that create a ghost image can differ when using various devices. The purpose of this investigation was to study the mapping of ghost images of the maxilla and the nasal cavity using a Cranex D digital panoramic machine. Materials and methods: ...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملArtificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms
In the dwindling natural mangrove today, mangrove reforestation projects are conducted worldwide to prevent further losses. Due to monoculture and the low survival rate of artificial mangroves, it is necessary to pay attention to mapping and monitoring them dynamically. Remote sensing techniques have been widely used to map mangrove forests due to their capacity for large-scale, accurate, effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014